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A.13 Oscillator met ladderaanpak

In §A.8 hebben we het geval van de simpele26 harmonische oscillator (SHO)
behandeld door de differentiaalvergelijking (moeizaam) op de lossen. Een
analytische manier dus. In deze paragraaf gebruiken we de operatoraanpak
uit §A.11 en in het bijzonder de laddermethode. Het is een meer alge-
bräısche techniek. Dit leidt tot een bijzonder elegante oplossing voor het
SHO-geval. Dit is ook om andere redenen van groot belang. In subpa-
ragraaf §A.13.2 breiden we de operatoraanpak uit. In §A.13.3 passen we
dit toe op de SHO. Tenslotte keren we in §A.13.4 weer terug naar de con-
crete golffuncties voor dit geval. Maar nu inclusief de normalisatie van deze
eigenfuncties.

A.13.1 De hamiltoniaan van de SHO

We beginnen, net zoals in §A.8, met de tijdsonafhankelijke Schrödinger-
vergelijking (6.30) op bladzijde 139:

Eu = − ~2

2m

d2u

dx2
+
m

2
ω2x2u (A.108)

Met behulp van de impuls27- en plaats operatoren, zoals ook in §A.11:

p̂u := −i~ d

dx
u (A.109a)

x̂u := xu (A.109b)

wordt dit:

Eu = Ĥu met Ĥ :=
p̂2

2m
+
m

2
ω2x̂2

26Simpel, omdat er ook nog gevallen zijn zoals de gedempte oscillator.
27We schrijven nu p̂ in plaats van p̂x. Het onderhanden geval is immers 1-dimensionaal.

Vandaar ook d
dx

in plaats van ∂
∂x

.
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waar Ĥ de hamiltioniaan28 genoemd wordt. In §A.11 hebben we ook al
diverse commutatoren afgeleid. Nu hebben we de volgende nodig:

Commutator x en p

[x̂, p̂] = i~ (A.110)

Een kleine historische noot. Max Born vond (A.110) zelf één van zijn
belangrijkste bijdragen. Deze formule, in de vorm pq− qp = h

2πi , staat dan
ook op zijn graf.

A.13.2 Hilbertruimte

We hebben gesproken over de operatoraanpak. We zijn daarbij echter
een beetje vaag gebleven over wat het nu voor objecten zijn waarop we
een operator kunnen toepassen. In het onderhavig voorbeeld zijn het
ééndimensionale complexwaardige (golf-)functies gedefinieerd op de reële
rechte R, waarbij normalisatievoorwaarde geldt:

∞∫
−∞

|u(x)|2 dx =

∞∫
−∞

u∗(x)u(x) dx is eindig (A.111)

Dit kan alleen maar als29

lim
x→∞

u(x) = 0 en lim
x→−∞

u(x) = 0 (A.112)

Dit soort dingen kunnen we optellen en vermenigvuldigen met een complex
getal. Er gelden allerlei (voor de hand liggende) rekenregels voor. Zoiets

28De eigenwaarden van Ĥ blijken energiewaarden te zijn. Er zou verwarring kunnen
ontstaan met de op bladzijde 5.46 genoemde operator Ê. Dat is inderdaad een andere
operator, maar ook daarvan zijn de eigenwaarden energiewaarden. Ĥ werkt op tijds-
onafhankelijke golffuncties, terwijl Ê op tijdafhankelijke functies werkt. De vergelijking
Êψ = Ĥψ is in feite de tijdafhankelijke Schrödinger-vergelijking.

29Op wat pathologische functies na. Anyway, wij nemen (A.112) gewoon als waar aan.
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wordt dan een complexe vectorruimte genoemd. Als ook nog een inproduct
is gegeven, dan noemt men dit een Hilbertruimte. Dit inproduct wordt
vaak genoteerd met 〈f |g〉. Een belangrijke eigenschap (of axioma) is dat
dit inproduct (wat een complex getal is) de volgende symmetrie-eigenschap
heeft. Wanneer men f en g verwisselt krijgen we de complex geconjugeerde:
〈g|f〉 = 〈f |g〉∗. Het inproduct is lineair in de tweede variabele: 〈g|zf〉 =
z〈g|f〉. Vanwege 〈g|f〉 = 〈f |g〉∗ geldt dan voor de eerste variabele: 〈zg|f〉 =
z∗〈g|f〉. Immers:

〈zg|f〉 = 〈f |zg〉∗ = (z〈f |g〉)∗ = z∗〈f |g〉∗ = z∗〈g|f〉

Dus bijvoorbeeld:〈ig|f〉 = −i〈g|f〉. In appendix A.5 van [12] vindt u wat
meer details. In ons voorbeeld wordt het inproduct als volgt gegeven:

〈f |g〉 :=

∞∫
−∞

f∗(x)g(x) dx

U ziet dat hiermee de integraal in (A.111) geschreven kan worden als 〈u|u〉.
Uit de eisen die worden gesteld aan het inproduct volgt ook dat dit groter
of gelijk aan nul is en de norm van u is dan

√
〈u|u〉 en wordt ook wel

geschreven als |u|.

Hermitische operator. Voor deze paragraaf hebben we zo meteen nog
één (abstract) begrip nodig. Een operator Q̂ heet hermitisch als voor alle
vectoren f en g geldt:

〈f |Q̂g〉 = 〈Q̂f |f〉 (A.113)

In zekere zin zou je zo’n operator reëel kunnen noemen. Nemen we als
eenvoudig voorbeeld voor Q̂ de vermenigvuldiging met een getal z. Dan
geldt

〈f |zg〉 = z〈f |g〉 = 〈z∗f |g〉

Dus is in dat geval Q̂ hermitisch dan en slechts dan als z∗ = z, dus als z reëel
is. Het begrip is belangrijk, omdat de operator die een dynamische variabele
representeert, zoals op bladzijde 239 geformuleerd, hermitisch moet zijn.
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Zijn eigenwaarden zijn dan ook reëel. Voor deze paragraaf is belangrijk dat
x̂ en p̂ hermitisch zijn. Voor x̂ is dit vrij gemakkelijk in te zien:

〈f |x̂g〉 :=

∞∫
−∞

f∗(x){xg(x)} dx =

∞∫
−∞

{xf(x)}∗g(x) dx =: 〈x̂f |f〉

Laten we nog even heel precies de overgang van de integrant bekijken:

f∗(x){xg(x)} = f∗(x)xg(x) = xf∗(x)g(x)
1
= {xf(x)}∗g(x)

Hierbij maken we bij
1
= gebruik van het feit dat x reëel is. Voor p̂ heeft

deze afleiding iets meer voeten in de aarde. U moet partieel integreren en
ook de rol van i in p̂ := −i~ d

dx speelt een belangrijke rol. Probeert u het
eerst even zelf? We laten de variabele vermelding (x) even weg:

〈f |p̂g〉 :=

∞∫
−∞

f∗
(
−i~ d

dx
g

)
dx = −i~

∞∫
−∞

f∗ dg

1
= −i~ [f∗g]∞−∞ + i~

∞∫
−∞

g df∗
2
= 0 + i~

∞∫
−∞

g
d

dx
f∗ dx

=

∞∫
−∞

i~
d

dx
f∗ g dx

3
=

∞∫
−∞

(
−i~ d

dx
f

)∗
g dx = 〈p̂f |g〉

Hier hebben we bij
1
= partieel gëıntegreerd en bij

2
= is (A.112) gebruikt. Bij

3
= hebben we als volgt gerekend: iz∗ = (i∗z)∗ = (−iz)∗. U ziet hoe subtiel
de mintekens hier hun rol spelen.

A.13.3 Ladders voor de SHO

In deze subparagraaf blijven we volledig op het niveau van de Hilbertruimte.
We gebruiken alleen de rekenregels daarvan en beschouwen (A.110) als een
(extra) axioma. Dus we gaan uit van een Hilbertruimte met daarin twee
hermitische operatoren x̂ en p̂ waarvoor (A.110) geldt. En dat is alles wat
we in deze subparagraaf mogen/zullen gebruiken.
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Ontbinding van de hamiltioniaan. Dan gaan we nu aan de slag. We
kijken nog eens goed naar de hamiltoniaan:

Ĥ :=
p̂2

2m
+
m

2
ω2x̂2 (A.114)

Nu proberen we bij de rechterkant (A.114) weer de som van kwadraten
te zien, en net zoals bij (A.82) op bladzijde 246, denken we weer aan de
ontbinding a2 + b2 = (a+ ib)(a− ib). We zouden zoiets kunnen verzinnen:

p̂2

2m
+
m

2
ω2x̂2 =

(
p̂√
2m

)2

+

(√
m

2
ωx̂

)2

'
(

p̂√
2m

+ i

√
m

2
ωx̂

)(
p̂√
2m
− i
√
m

2
ωx̂

)
1√
2m

(p̂+ imωx̂)
1√
2m

(p̂− imωx̂) = (â+ ib̂)(â− ib̂)

We hebben ' gebruikt in plaats van = want het betreft hier operatoren,
dus zal er geen gelijkheid zijn, maar er komt een extra term bij. Dat zullen
we binnenkort ook nog zien gebeuren. Nu kunt u gaan rekenen met â en
b̂ waarvan de definitie hierboven is gesuggereerd: âb̂ en b̂â bepalen en het
verband met Ĥ en dergelijke. Berekeningen die we zo dadelijk ook daad-
werkelijk gaan doen maar dan met de volgende twee iets andere operatoren:

verhoog- en verlaagoperator

â± :=
1√

2m~ω
(∓ip̂+mωx̂) (A.115)

Er zijn een paar redenen om de operatoren zo te kiezen:

1. De imaginaire i bij de operator p̂ zetten is nuttig, omdat dan later bij
het invullen van p̂ := −i~ d

dx de zaak reëel wordt;

2. De extra factor
√
~ω in de noemer blijkt handig;
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3. Sluit aan bij de standaard;

Wanneer we het (operator-)product â+â− gaan uitwerken zullen we de ha-
miltoniaan weer moeten terugzien. De gedachte was immers dat het daar
een soort van ontbinding van was.

â+â− =
1

2m~ω
(−ip̂+mωx̂)(ip̂+mωx̂) =

1

2m~ω
(p̂2 +m2ω2x̂2 + imω[x̂, p̂])

1
=

1

~ω

(
p̂2

2m
+

1

2
mω2x̂2

)
+

1

2~
i2~ =

1

~ω
Ĥ − 1

2

Bij
1
= is onder andere (A.110) toegepast. De hamiltoniaan verschijnt inder-

daad weer maar met een correctie omdat x̂ en p̂ niet commuteren. Evenzo
berekenen we â−â+ en zetten de resultaten netjes onder elkaar:

â+â− =
1

~ω
Ĥ − 1

2
(A.116a)

â−â+ =
1

~ω
Ĥ +

1

2
(A.116b)

Nu willen we toe naar de commutator van â+ (en zo meteen ook â−) met
Ĥ. Daartoe vermenigvuldigen we (A.116a) aan de rechterkant met â+ en
(A.116b) aan de linkerkant met â+:

â+â−â+ =
1

~ω
Ĥâ+ −

1

2
â+

â+â−â+ =
1

~ω
â+Ĥ +

1

2
â+

En we zien dus dat

1

~ω
Ĥâ+ −

1

2
â+ =

1

~ω
â+Ĥ +

1

2
â+ ⇒

[
Ĥ, â+

]
= ~ωâ+ (A.117)

Op analoge manier kunnen we inzien dat[
Ĥ, â−

]
= −~ωâ− (A.118)
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De ladder. Stel nu dat we een oplossing hebben gevonden. Of iets ab-
stracter gezegd: dat we een eigenvector umet eigenwaarde E van Ĥ hebben:

Ĥu = Eu

TAAK

Kijk wat er gebeurt wanneer we Ĥ loslaten op de vector â+u.

Ĥâ+u =
[
Ĥ, â+

]
u+ â+Ĥu = ~ωâ+u+ â+Eu = (E + ~ω)â+u

Met andere woorden: â+u is een eigenvector van Ĥ met eigenwaarde E+~ω.
De operator â+u voegt als het ware een schepje van ~ω toe aan de energie.
Dat is een stapje omhoog op de ladder! We kunnen ook een stapje omlaag,
want analoog hebben we ook:

Ĥâ−u = (E − ~ω)â−u

Dit verklaart ook de naam van de operatoren â+ en â− die we bij (A.115)
hebben staan.

Laagste trede. Stel dat we de verlaagoperator herhaaldelijk gaan toe-
passen. Dan zijn er twee mogelijkheden: (1) dit stopt nooit en de ladder is
dus naar beneden toe onbegrensd, of (2) het stopt wel en we hebben dan
dus een vector u0 waarvoor moet gelden:

â−u0 = 0 (A.119)

Laten we van het laatste geval uitgaan. We passen Ĥ toe op u0:

Ĥu0
1
= (~ω â+â− +

1

2
~ω)u0 = ~ω â+â−u0 +

1

2
~ωu0 =

1

2
~ωu0

Stap
1
= volgt uit (A.116a). We zien hier dat u0 een eigenfunctie is met

eigenwaarde 1
2~ω. Als we de verhoogoperator â+ nu herhaaldelijk toepas-

sen dan krijgen we de eigenwaarden 1
2~ω, 1

1
2~, 2

1
2ω, . . . . We zien dus het

resultaat (A.65) van bladzijde 223 terug.
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De eigenvectoren en de teloperatoren. Bij elke eigenwaarde En =
1
2~ω+n~ω hoort een eigenvector un, ook wel eigentoestand genoemd. Aan
de vergelijkingen (A.116) zien we dat deze eigenvectoren ook eigenvectoren
van de operatoren â+â− en â−â+ zijn. Laten we eens kijken naar de eerste
via (A.116a):

â+â−un =

(
1

~ω
Ĥ − 1

2

)
un =

1

~ω
Ĥun −

1

2
un =

1

~ω
Enun −

1

2
un

=
1

~ω

(
1

2
~ω + n~ω

)
un −

1

2
un =

(
1

2
+ n

)
un −

1

2
un = n un

Dus de eigenwaarde van â+â− is simpelweg het getal n. Deze operator telt
als het ware het aantal energiekwanta dat de toestand telt. Op dezelfde
manier vinden we de eigenwaarde n+1 voor â−â+ met behulp van (A.116b).
Samenvattend:

â+â−un = n un (A.120a)

â−â+un = (n+ 1) un (A.120b)

De eigenvectoren. We kunnen ook zuiver algebräısch een verband tus-
sen deze eigenvectoren vinden. Daarvoor hebben we nu ook het inproduct
nodig. We nemen aan dat alle un genormaliseerd zijn, dus dat |un|2 =
〈un|un〉 = 1. Ook weten we dat als we â+ toepassen op un dat we dan een
eigenvector met eigenwaarde En+1 krijgen. Dat is dus op een constante na
un+1. Laten we deze constante even cn noemen. We hebben dus:

â+un = cnun+1 ⇒ un+1 =
1

cn
â+un (A.121)

Nu blijkt dat we de factoren cn precies kunnen bepalen. We berekenen van
de beide zijden van (A.121) de norm in het kwadraat. Van de rechterkant
is dit het eenvoudigst:

〈cnun+1|cnun+1〉 = c∗ncn〈un+1|un+1〉 = |cn|2 (A.122)
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De linkerkant wordt 〈â+un|â+un〉. Als u hier de definitie van â+ invult
komt u er ook uit. We volgen een iets andere weg. We laten zien hoe we
de rechter â+ van 〈â+un|â+un〉 naar de linkerkant kunnen brengen, dus
iets als: 〈â+un|â+un〉 = 〈B̂â+un|un〉. Als â+ hermitisch zou zijn was dat
makkelijk, immers dan zou B̂ = â+ kunnen zijn. De operatoren p̂ en x̂
zijn in ieder geval wel hermitisch dus laten we eens kijken naar de factor
(−ip̂+mωx̂) van â+:

〈f |(−ip̂+mωx̂)g〉 = −i〈f |p̂g〉+mω〈f |x̂g〉 = −i〈p̂f |g〉+mω〈x̂f |g〉
= 〈ip̂f |g〉+ 〈mωx̂f |g〉 = 〈(ip̂+mωx̂)f |g〉

We zien aan de linkerkant dus ip̂ + mωx̂, het hoofdbestanddeel van â−,
verschijnen. We kunnen concluderen dat

〈f |â+g〉 = 〈â−f |g〉

We zien dus dat we â+ naar links kunnen brengen door hem te wijzigen in

â−. Voor (de lengte van) de linkerkant van (A.121) krijgen we nu (bij
1
= is

(A.120b) gebruikt):

〈â+un|â+un〉 = 〈â−â+un|un〉
1
= 〈(n+ 1)un|un〉 = (n+ 1)〈un|un〉 = n+ 1

Combineren we dit met (A.122) dan krijgen we dus:

n+ 1 = |cn|2 ⇒ cn =
√
n+ 1

Moeten we niet schrijven |cn| in plaats van cn? Formeel wel want er zou
nog een complexe factor eiϕ bij kunnen komen, maar die slokken we dan
wel op in de un. Daarmee blijft deze laatste immers genormaliseerd. De
recurrente betrekking (A.121) wordt nu dus:

un+1 =
1√
n+ 1

â+un (A.123)
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Orthonormale basis. Via de recursieve relatie (A.123) hebben we ervoor
gezorgd, dat als de eerste, u0, genormaliseerd is (|u0| = 1) dan zijn alle
volgende het ook. Dus allemaal. Maar ze staan ook allemaal loodrecht op
elkaar, dat wel zeggen dat 〈un|um〉 = 0 als n 6= m. Dit is een heel algemene
eigenschap van twee eigenvectoren met verschillende eigenwaarden. Stel
namelijk dat u1 en u2 eigenvectoren zijn met eigenwaarden q1 6= q2, van
een hermitische operator Q̂. Dan hebben we:

〈u1|Q̂u2〉 = 〈Q̂u1|u2〉 ⇒ 〈u1|q2u2〉 = 〈q1u1|u2〉
⇒ q2〈u1|u2〉 = q1〈u1|u2〉 ⇒ 〈u1|u2〉 = 0

A.13.4 De SHO golffuncties

We hebben de energiewaarden teruggevonden via een puur algebräısche
methode. We keren nu terug naar de concrete golffuncties. We hopen
deze te kunnen ontdekken in overeenstemming met de functies die we in
§A.8 hebben gevonden. Voor u0 kan dat via de vergelijking (A.119) en als
we deze eenmaal hebben dan kunnen we via de recursieve relatie (A.123)
de overige oprollen. Het is dus zaak dat we een expliciete vorm voor de
operatoren â± vinden. Het blijkt dat de herschaling die we op bladzijde
219 hadden ingevoerd het leven nu ook weer makkelijker maakt. We gaan
dus over op de variabele y in plaats van x met de volgende verbanden:

x =

√
~
mω

y ⇒ d

dx
=

√
mω

~
d

dy

TAAK

Zet de definities van p̂ en x̂ bij (A.109) om naar de variabele y en
vul dit in bij de formule voor de operatoren â± bij (A.115). Laat dit
meteen werken op een functie u(y).
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Met de definities (A.109) krijgen we:

p̂u = −i~ d

dx
u = −i~

√
mω

~
d

dy
u ⇒ ip̂u =

√
mω~u′

x̂u = xu =

√
~
mω

y ⇒ mωx̂u =
√
mω~ yu

Hierbij hebben we meteen ip̂u en mωx̂u ook bepaald zodat we die kunnen
invullen bij de (definitie van) de operatoren â± bij (A.115):

â± =
1√

2m~ω
(∓
√
mω~ u′ +

√
mω~ yu) =

1√
2

(∓u′ + yu) (A.124)

We zien inderdaad, dankzij de herschaling, een redelijk simpele uitdrukking.

De startfunctie. We beginnen uiteraard met u0. Hiervoor hebben we
de vergelijking â−u0 = 0. Dit wordt nu dus (we noteren voor het gemak
even u in plaats van u0):

â−u = 0
(A.124)⇒ u′ + yu = 0

Hiervan weet u de oplossing eigenlijk al, want die kwam op bladzijde 220
voorbij. Een nette manier om deze te vinden is als volgt:

u′ + yu = 0 ⇒ u′

u
= −y ⇒ d

dy
{ln(u)} = −y

⇒ ln(u) = −1

2
y2 + C ⇒ u = De−

1
2
y2

We hebben, op de constante D na, de oplossing dus gevonden. We kun-
nen deze constante ook nog wel bepalen, want we willen graag dat functie
genormaliseerd is. Dus dat de integraal van |u0|2 1 is. We moeten deze
integratie echter wel met de ‘echte’ variabele x doen:

1 =

∞∫
−∞

D2e−
mω
~ x2

dx
1
= D2

√
π~
mω

⇒ D = 4

√
mω

π~



280 BIJLAGE A. BIJLAGEN

Bij
1
= hebben we gebruik gemaakt van de Gaussintegraal (A.59) op bladzijde

217. Conclusie:

u0(x) = 4

√
mω

π~
e−

mω
2~ x

2
(A.125)

Alle functies. Dan kunnen we nu via de recursieve relatie (A.123), ver-
trekkend vanuit (A.125) u1, u2, u3, . . . achtereenvolgens gaan bepalen. Merk
op dat deze automatisch genormaliseerd zijn, want dat lag ten grondslag
aan de afleiding van (A.123) en het startpunt (A.125) is het al. Laten we
(A.123) combineren met de uitdrukking voor â+ bij (A.124):

un+1 =
1√
n+ 1

1√
2

(yun − u′n) (A.126)

We werken weer met de variabele y en u0 = De−
1
2
y2

. Ik zou u aanraden
om nu een paar volgende op een kladpapiertje uit te rekenen, dan ziet u

het patroon. Merk op dat d
dy

(
e−

1
2
y2
)

= −ye−
1
2
y2

. Vooruit ik doe u1:

u1 =
1√
2

(yu0 − u′0) =
1√
2
{yDe−

1
2
y2 − (−Dye−

1
2
y2

)} = D
1√
2

2ye−
1
2
y2

U zult merken dat un steeds van de volgende vorm is:

un(y) = Anfn(y)e−
1
2
y2

(A.127)

Dus een constante An (we hadden al A0 = D en A1 = D 1√
2
) en een functie

fn van y (we hadden al f0(y) = 1 en f1(y) = 2y).

TAAK

Vul un zoals in (A.127) in bij (A.126). Bepaal zo een uitdrukking
voor un+1 en constateer dat die weer van de vorm (A.127) is en
bepaal zo recursieve betrekkingen voor An en fn.
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We berekenen via de productregel eerst even u′n:

u′n =
d

dy

(
Anfne

− 1
2
y2
)

= An

(
f ′ne
− 1

2
y2 − fnye−

1
2
y2
)

= An
(
f ′n − fny

)
e−

1
2
y2

Dan is de term tussen haakjes van (A.126):

yun − u′n = yAnfne
− 1

2
y2 −An

(
f ′n − fny

)
e−

1
2
y2

= An(yfn − f ′n + fny)e−
1
2
y2

= An(2yfn − f ′n)e−
1
2
y2

Dus de complete vorm van (A.126) wordt nu:

un+1 =
1√
n+ 1

1√
2
An(2yfn − f ′n)e−

1
2
y2

En hierin herkennen we dezelfde vorm als (A.127) als we nemen:

An+1 =
1√
n+ 1

1√
2
An (A.128a)

fn+1 = 2yfn − f ′n (A.128b)

Het herhaald toepassen van (A.128a) en de startwaarde A0 = D = 4
√

mω
π~

leidt tot:

An = 4

√
mω

π~
1√

n!
√

2n
(A.129)

Boeiender is het gevolg van de herhaalde toepassing van (A.128b). We
zien dat als we fn hebben verkregen, we de volgend kunnen maken door fn
met 2y te vermenigvuldigen en daar vervolgens de afgeleide van fn vanaf
trekken. Startend met f0(y) = 1, verkrijgen we eerst simpelweg f1(y) = 2y
(die hadden we bij u1 als gezien). Als we verder gaan dan zien we:

f2(y) = 4y2 − 2

f3(y) = 8y3 − 4y − 8y = 8y3 − 12y

f4(y) = 16y4 − 24y2 − 24y2 + 12 = 16y4 − 48y2 + 12

f5(y) = 32y5 − 96y3 + 24y − 64y3 + 96y = 32y5 − 160y3 + 120y
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Et cetera! Verbazen mogen we ons niet, verblijden wel. We zien de Hermite
veeltermen van bladzijde 225 weer verschijnen! En dat moet natuurlijk
ook want die oplossing hadden we, op een heel andere manier al een keer
gevonden. Verassend is misschien wel dat we ze exact terugvinden (op een
constante na had ook gekund). We zien immers dat de coëfficiënt van yn

steeds 2n is, en dat was de conventie. Bovenstaande elegante manier om ze
recursief te genereren werpt dus ook licht op deze conventie. We hebben
dus simpelweg fn = Hn en (A.127) kan nu met behulp van (A.129) onder
terugkeer naar de variabele x via y =

√
mω
~ x worden geschreven als:

De SHO golffuncties

un(x) = 4

√
mω

π~
1√
n!2n

Hn

(√
mω

~
x

)
e−

mωx2

2~

Naschrift. In het begin van deze paragraaf hebben we gezegd dat de
harmonische oscillator, en in het bijzonder de ladderaanpak daarvan, van
groot belang is. Waarom is dat zo? We hebben het nog niet gehad over
velden. Denken we aan elektromagnetische golven, dan weten we (klassiek)
dat daar op één punt in de ruimte de veldsterkten ook (harmonisch) heen
en weer bewegen. Bij de kwantumvelden theorie (QFT) blijkt dan ook dat
het veld kan worden opgevat als een (oneindige) verzameling gekoppelde
oscillatoren. En ook daar zitten dan natuurlijk kwanta van energie in. En
dat zijn precies de fotonen! Maar, net als bij de ingeving van de Broglie,
ligt het voor de hand dat dit niet alleen voor de fotonen als deeltjes waar is
maar voor alle (elementaire) deeltjes. Zo blijkt de QFT meteen een theorie
voor deeltjes de worden. Deze theorie maakt het mogelijk om deeltjes te
laten ontstaan en ze kunnen ook weer verdwijnen. In dat kader spreekt men
dan ook wel over creatie- en annihilatieoperatoren in plaats van verhoog-
en verlaagoperatoren.
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